11 resultados para HIV, primary resistance to antirretrovirales, virologic faulier, secondary resistance

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Serpentinization of abyssal peridotites is known to produce extremely reducing conditions as a result of dihydrogen (H2,aq) release upon oxidation of ferrous iron in primary phases to ferric iron in secondary minerals by H2O.We have compiled and evaluated thermodynamic data for Fe-Ni-Co-O-S phases and computed phase relations in fO2,g-fS2,g and aH2,aq-aH2S,aq diagrams for temperatures between 150 and 400°C at 50MPa.We use the relations and compositions of Fe-Ni-Co-O-S phases to trace changes in oxygen and sulfur fugacities during progressive serpentinization and steatitization of peridotites from the Mid-Atlantic Ridge in the 15°20'N Fracture Zone area (Ocean Drilling Program Leg 209). Petrographic observations suggest a systematic change from awaruite- magnetite-pentlandite and heazlewoodite-magnetite-pentlandite assemblages forming in the early stages of serpentinization to millerite-pyrite-polydymite-dominated assemblages in steatized rocks. Awaruite is observed in all brucite-bearing partly serpentinized rocks. Apparently, buffering of silica activities to low values by the presence of brucite facilitates the formation of large amounts of hydrogen, which leads to the formation of awaruite. Associated with the prominent desulfurization of pentlandite, sulfide is removed from the rock during the initial stage of serpentinization. In contrast, steatitization indicates increased silica activities and that highsulfur-fugacity sulfides, such as polydymite and pyrite-vaesite solid solution, form as the reducing capacity of the peridotite is exhausted and H2 activities drop. Under these conditions, sulfides will not desulfurize but precipitate and the sulfur content of the rock increases. The co-evolution of fO2,g-fS2,g in the system follows an isopotential of H2S,aq, indicating that H2S in vent fluids is buffered. In contrast, H2 in vent fluids is not buffered by Fe-Ni-Co-O-S phases, which merely monitor the evolution of H2 activities in the fluids in the course of progressive rock alteration.The co-occurrence of pentlandite- awaruite-magnetite indicates H2,aq activities in the interacting fluids near the stability limit of water. The presence of a hydrogen gas phase would add to the catalyzing capacity of awaruite and would facilitate the abiotic formation of organic compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The basement cored at Site 1201 (west Philippine Basin) during Ocean Drilling Program Leg 195 consists of a 91-m-thick sequence of basalts, mostly pillow lavas and perhaps one sheet lava flow, with a few intercalations of hyaloclastite and interpillow sedimentary material. Hydrothermal alteration pervasively affected the basalt sequence, giving rise to a variety of secondary minerals such as K-Fe-Mg-clay minerals, oxyhydroxides and clay minerals mixtures, natrolite group zeolites, analcite, alkali feldspar, and carbonate. The primary minerals of pillow and sheet basalts that survived the intense hydrothermal alteration were investigated by electron microprobe with the aim of characterizing their chemical composition and variability. The primary minerals are mostly plagioclase, ranging in composition from bytownite through labradorite to andesine, chromian-magnesian-diopside, and spinels, both Ti magnetite (partially maghemitized) and chromian spinel. Overall, the chemical features of the primary minerals of Site 1201 basalts correspond to the primitive character of the bulk rocks, suggesting that the parent magma of these basalts was a mafic tholeiitic magma that most likely only suffered limited fractional crystallization and crystallized at high temperatures (slightly below 1200°C) and under increasing fO2 conditions. The major element composition of clinopyroxene suggests a backarc affinity of the mantle source of Site 1201 basement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Labradorite is the principal feldspar in tholeiitic basalt from Deep Sea Drilling Project Site 464, on northern Hess Rise. Andesine and oligoclase constitute most primary feldspar in the reportedly trachytic rocks from southern Hess Rise at Site 465. Secondary sanidine(?) has replaced the primary phases at Site 465. The secondary potassium feldspar probably resulted from reaction of trachyte with potassium-bearing hydrothermal fluids or sea water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given the importance of the inversion of seamount magnetic anomalies, particularly to the motion of the Pacific plate, it is important to gain a better understanding of the nature of the magnetic source of these features. Although different in detail, Ninetyeast Ridge is composed of submarine and subaerial igneous rocks that are similar to those found at many seamounts, making it a suitable proxy. We report here on the magnetic petrology of a collection of samples from Ninetyeast Ridge in the Indian Ocean. Our purpose is to determine the relationship between primary petrology, subsequent alteration, and magnetic properties of the recovered rocks. Such information will eventually lead to a more complete understanding of the magnetization of seamounts and presumably improvements in the accuracy of anomaly inversions. Three basement sites were drilled on Ninetyeast Ridge, with recovery of subaerial basalt flows at the first two (Sites 756 and 757) and submarine massive and pillow flows at the final one (Site 758). The three sites were distinctly different. Site 756 was dominated by ilmenite. What titanomagnetite was present had undergone deuteric alteration and secondary hematite was present in many samples. The magnetization was moderate and stable although it yielded a paleolatitude somewhat lower than expected. Site 757 was highly oxidized, presumably while above sea level. It was dominated by primary titanomagnetite, which was deuterically altered. Secondary hematite was common. Magnetization was relatively weak but quite stable. The paleolatitude for all but the lowermost flows was approximately 40° lower than expected. Site 758 was also dominated by primary titanomagnetite. There was relatively little oxidation with most primary titanomagnetite showing no evidence of high-temperature alteration. No secondary hematite was in evidence. This site had the highest magnetization of the three (although somewhat low relative to other seamounts) but was relatively unstable with significant viscous remanence in many samples. Paleolatitude was close to the expected value. It is not possible, at present, to confidently associate these rocks with specific locations in a seamount structure. A possible and highly speculative model would place rocks similar to Site 757 near the top of the edifice, Site 756 lower down but still erupted above sea level, and Site 758 underlying these units, erupted while the seamount was still below sea level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dataset consists of average water depth, average current velocity and direction and roughness lengths calculated from the spatially-averaged velocity profiles collected with an ADCP along a transect in the Jade Bay in 2008.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a demand for regularly updated, broad-scale, accurate land cover information in Victoria from multiple stakeholders. This paper documents the methods used to generate an annual dominant land cover (DLC) map for Victoria, Australia from 2009 to 2013. Vegetation phenology parameters derived from an annual time series of the Moderate Resolution Imaging Spectroradiometer Vegetation Indices 16-day 250 m (MOD13Q1) product were used to generate annual DLC maps, using a three-tiered hierarchical classification scheme. Classification accuracy at the broadest (primary) class level was over 91% for all years, while it ranged from 72 to 81% at the secondary class level. The most detailed class level (tertiary) had accuracy levels ranging from 61 to 68%. The approach used was able to accommodate variable climatic conditions, which had substantial impacts on vegetation growth patterns and agricultural production across the state between both regions and years. The production of an annual dataset with complete spatial coverage for Victoria provides a reliable base data set with an accuracy that is fit-for-purpose for many applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydraulic effect of asymmetric compound bedforms on tidal currents was assessed from field measurements of flow velocity in the Knudedyb tidal inlet, Denmark. Large asymmetric bedforms with smaller superimposed ones are a common feature of sandy shallow water environments and are known to act as hydraulic roughness elements in dependence with flow direction. The presence of a flow separation zone on the bedform lee was estimated through analysis of the measured velocity directions and the calculation of the flow separation line. The Law of the Wall was used to calculate roughness lengths and shear velocities from log-linear segments sought on transect-averaged and single-location velocity profiles. During the ebb tide a permanent flow separation zone was established over the steep (10-20°) lee sides of the ebb-oriented primary bedforms, which generated a consequent drag on the flow. During the flood, no flow separation was induced by the gentle (2°) lee side of the primary bedforms except over the steepest (10°) part of the lee side where a small separation zone was sometimes observed. As a result, hydraulic roughness was only due to the superimposed bedforms. The parameterized flow separation line was found to underestimate the length of the flow separation zone of the primary bedforms. A better estimation of the presence and shape of the flow separation zone over complex bedforms in a tidal environment still needs to be determined; in particular the relationship between flow separation zone and bedform geometry (asymmetry, relative height or slope of the lee side) is unclear. This would improve the prediction of complex bedform roughness in tidal flows.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Basalt samples recovered during DSDP Legs 68, 69, and 70 from a 550-meter-thick section in two holes near the Costa Rica Rift (Holes 501 and 504B) were found to contain the following secondary minerals: trioctahedral and dioctahedral smectite, chlorite, mixed-layer clays, talc, hematite, pyrite, foujasite, phillipsite, analcime, natrolite, thomsonite, gyrolite, aragonite, calcite, anhydrite, chalcocite, Fe-hydrosilicate, okenite, apophyllite, actinolite, cristobalite, quartz, and magnesite. A less positive identification of bismutite was made. A mineral rich in Mn and minerals with strong reflections at 12.9 Å and 3.20 Å remain unidentified. Trioctahedral smectite replaces glass and olivine in the basalt groundmass. The other secondary minerals occur in veins. The distribution of the secondary minerals in the basalt section shows both hydrothermal and oxidizing-nonoxidizing zonation. Most of the secondary minerals formed under alkaline, nonoxidizing conditions at temperatures up to 120° C. An acidic regime probably existed in the lowest portion of basalt. Oxidative diagenesis followed nonoxidative diagenesis in the upper part of the section. Oxidative diagenesis is characterized by the absence of celadonite, rare occurrences of dioctahedral smectite, and widespread hematite and phillipsite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aqueous dihydrogen (H2,aq) is produced in copious amounts when seawater interacts with peridotite and H2O oxidizes ferrous iron in olivine to ferric iron in secondary magnetite and serpentine. Poorly understood in this process is the partitioning of iron and its oxidation state in serpentine, although both impose an important control on dihydrogen production. We present results of detailed petrographic, mineral chemical, magnetic and Mößbauer analyses of partially to fully serpentinized peridotites from the Ocean Drilling Program (ODP) Leg 209, Mid-Atlantic Ridge (MAR) 15°N area. These results are used to constrain the fate of iron during serpentinization and are compared with phase equilibria considerations and peridotite-seawater reaction path models. In samples from Hole 1274A, mesh-rims reveal a distinct in-to-out zoning from brucite at the interface with primary olivine, followed by a zone of serpentine + brucite ± magnetite and finally serpentine + magnetite in the outermost mesh-rim. The compositions of coexisting serpentine (Mg# 95) and brucite (Mg# 80) vary little throughout the core. About 30-50% of the iron in serpentine/brucite mesh-rims is trivalent, irrespective of subbasement depth and protolith (harzburgite versus dunite). Model calculations suggest that both partitioning and oxidation state of iron are very sensitive to temperature and water-to-rock ratio during serpentinization. At temperatures above 330 °C the dissolution of olivine and coeval formation of serpentine, magnetite and dihydrogen depends on the availability of an external silica source. At these temperatures the extent of olivine serpentinization is insufficient to produce much hydrogen, hence conditions are not reducing enough to form awaruite. At T < 330 °C, hydrogen generation is facilitated by the formation of brucite, as dissolution of olivine to form serpentine, magnetite and brucite requires no addition of silica. The model calculations suggest that the iron distribution observed in serpentine and brucite is consistent with formation temperatures ranging from <150 to 250 °C and bulk water-to-rock ratios between 0.1 and 5. These conditions coincide with peak hydrogen fugacities during serpentinization and are conducive to awaruite formation during main stage serpentinization. The development of the common brucite rims around olivine is either due to an arrested reaction olivine -> brucite -> serpentine + brucite, or reflects metastable olivine-brucite equilibria developing in the strong gradient in silica activity between orthopyroxene (talc-serpentine) and olivine (serpentine-brucite).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we describe textural relationships in hydrated upper mantle peridotites emplaced at a nonconstructive ridge segment. Development of serpentinites and partially serpentinized peridotites takes place in four main stages: (1) pervasive serpentinization forming mainly lizardite, (2) a tensional stage forming chrysotile + talc + chlorite, (3) a deformational stage forming antigorite + tremolite, and (4) a late local tensional stage forming another generation of chrysotile veinlets. Mineral chemistry of serpentine pseudomorphs reflects in part primary mineral compositions. Olivine pseudomorphs are typically nickeliferous and depleted in aluminum and chromium. Orthopyroxene pseudomorphs have lower nickel contents and relatively high iron, aluminum, and chromium contents. Clinopyroxene pseudomorphs have very low nickel contents and relatively high aluminum and chromium contents. These chemical patterns in the serpentinites can be used to help discriminate between harzburgitic and lherzolitic protoliths. Oxygen isotopes and mineral parageneses suggest serpentine is derived from circulation of hydrothermal (200?C) fluids through the peridotite body. Crystallization of tremolite, talc, and chlorite may have occurred at temperatures up to 525?C if C02/H20 ratios were less than 0.25. Open fissures developing in aging upper mantle provide paths for important seawater circulation through a thin basaltic carapace down to shallow mantle rocks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Records of total organic carbon (TOC) and C37 alkenones were used as indicators for past primary productivity in the western and eastern Arabian Sea. Data from GeoB 3005, an open ocean site in the western Arabian Sea upwelling area, are compared with similar records of GeoB 3007 from the Owen Ridge, Ocean Drilling Program (ODP) Site 723 from the continental margin off Oman and MD 900963 from the eastern Arabian Sea. TOC/C37 alkenone records together with other proxies used to reconstruct upwelling intensity, indicate periods of high productivity in tune with precessional forcing all over the Arabian Sea. Based on their phase-relationship to variations in boreal summer insolation they can be divided into three groups. In the western Arabian Sea the precession-related phasing is different between productivity proxies and those for summer monsoon wind strength and upwelling intensity. TOC and C37 alkenone records from the western Arabian Sea lag the other monsoonal indicators by about 5 kyr, but lead productivity indicators from the eastern Arabian Sea by 3 kyr. Based on the differences in phase relationships associated with the precessional cycling between productivity and monsoonal proxies in the western Arabian Sea it is proposed that the TOC/C37 alkenone signal in the western Arabian Sea document a combined signal of moderate SW monsoon winds and of strengthened and prolonged NE monsoon winds. In the eastern Arabian Sea the phasing hints to coincidence between maximum productivity and stronger NE monsoon winds associated with precession-related maxima in ice volume. In contrast, variations in paleoproductivity at site GeoB 3007 from the Owen Ridge indicate productivity maxima during glacial substages 8.2, 6.2 and 2.2, whereas precessionrelated changes are of only minor importance at this location. The results of frequency analyses confirm that productivity at site GeoB 3007 responds predominantly to glacialinterglacial climate changes, while site GeoB 3005 from the open ocean upwelling region near the Gulf of Aden is dominated by precessional insolation. A possible explanation for the pattern revealed at the Owen Ridge is the periodic NW-SE displacement of the Findlater Jet axis, which separates the region of open ocean upwelling to the northwest from downwelling to the southeast ofthe jet. The carbon isotopes of planktic foraminifera reflect nutrient related d13C variations of dissolved inorganic carbon. The difference between the planktic foraminifera Globigerinoides ruber (w), living in the upper 50 m of the water column, and the deeper Iiving Neogloboquadrina dutertrei (Delta d13Cr-d) of core GeoB 3005 displays nutrient variations in the upwelling area near the Gulf of Aden. The results of cross-spectral analyses between Deltad13Cr-d of GeoB 3005 and proxies for SW monsoon intensity indicate, too, a dissociation of productivity from monsoonal upwelling intensity. Instead, productivity depends mainly on the availability of nutrients, while upwelling intensity of sub-surface water masses seems to be of only secondary importance. Additionally, sea surface temperatures (SSTs) were reconstructed using the unsaturation ratio of C37 alkenones. Alkenone SSTs reflect annual mean temperatures rather than explicitly the season of upwelling. This is evident from alkenone SSTs in a transect of surface sediments extending from the inner Gulf of Aden into the western Arabian Sea. The alkenone-derived SST records of GeoB 3005 from the open ocean upwelling region near the Gulf of Aden and GeoB 3007 from the Owen Ridge reveal similar variations with high SSTs during interglacial and low SSTs during glacial periods. The glacial marine oxygen isotope stage (MIS) 6 remains relatively warm and was not as cold as MIS 3 to 4 and 8 according to the alkenone SST. Similar variation-patterns were reconstructed in the coastal upwelling area off Oman for ODP Site 723 as weIl as in the eastern Arabian Sea for MD 900963, where upwelling is not as pronounced as in the western Arabian Sea. Spectral-analyses indicate that SST changes are in good agreement with the modulation of low-latitude precessional insolation changes by eccentricity. However, they do not show the pronounced cydicity in the precessional frequency band, which is characteristic for variations in paleoproductivity. Although the overall variation pattern is very similar, a dose comparison between the western (GeoB 3005) and the eastern Arabian Sea (MD 900963) shows larger differences between both sites during cold intervals than during periods of warm SSTs. This is attributed to a more effective cooling of surface waters in the western Arabian Sea by prolonged NE monsoon winds during times of expanded Northern Hemisphere ice-sheets, thereby lowering the annual mean SSTs stronger than in the eastern Arabian Sea.